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1. Introduction

The ability to reason with past cases to solve new problems and justify whether or not a past
course of action is, or is not, appropriate and hence should, or should not, be taken is central to
many problems of central concern to DARPA, such as: provision of powerful reasoning tools to
support high level strategic and tactical planning, understanding complex problem solving behav-

ior, a ng the acquisition of expertise, and improving the actual design and manufacture processes
for ( iponents of military equipment. For instance, a commander faced with a situation requiring
development of a course of action needs to relate this new situation with past situations of a similar
nature, analyze what was good or bad about the way the past situations were handled, propose
ways perhaps modelled on past solutions to handle the new situation, explore the ramifications
and uncover potential fatal weaknesses of these proposals, select the best ones, and explain (par-
ticularly to those who must carry it out) and justify (particularly to those in higher command)
the chosen course of action. Such decision making often occurs in complex domains, under serious
time constraints, and with potentially immense penalties for failure. The best decision makers are
both thoroughly knowledgeable about the current situation and ever mindful of the lessons of past
history; in a word, they are expert case-based reasoners.

Fortunately, many areas of importance to DARPA, such as strategic planning and design and
manufacture, are areas where there does exist a corpus of past cases (e.g., the annals of military
compaigns, specifications for previously implemented designs) which provides the expert with much
of his power; in other words, we have an available case base. Further, in some of these problem
domains case-based reasoning techniques provide the expert's primary, if not only, tool since there
are few, if any, ironclad theories or rules, and those that do exist are subject to revision, beset with
problems of interpretation, and stressed by dynamically changing situations. Thus, we have the
inescapable need for case-based techniques. What we do not have, as yet, is an extensive, cohesive,
well-developed technological base for using existing case bases to satisfy the need. Through the

research contributions of a significant, and growing, community of Al researchers, 1 however, we

'E.g., Alterman, Ashley, Hammond, Kolodner, Rissland have all built pr-,gramus which use cxse-based re'son-
ing techniques. See the bibliography for a representative sanpling ,f technical p-,pers and the Appendix for brief



do have an excellent foundation for establishing a unified and principled Al approach to case-based
reasoning. That is the purpose of this research program.

It is an immediate goal of this research program to develop and explore Al techniques for case-
based reasoning, to embrace application domains not doable with other Al methodologies (e.g.,
expert systems), and to demonstrate these new techniques in a coordinated effort encompassing all
of the key ingredients of case-based reasoning. Attainment of these goals requires development of
a theory of case-based .reasoning, and elucidation of various types and components of CBR, and,
most likely, development of generic CBR "shells" to facilitate the building of case-based reasoning
systems in various application domains. Another immediate goal is to understand how these newer
case-based techniques can be used in problem solving architectures using other Al techniques in a
complementary way, for instance, using CBR techniques in concert with learning and knowledge
acquisition paradigms to break the "knowledge acquisition bottleneck".

Case-based reasoning ("CBR") can be characterized as the generating, analyzing, or interpreting
of courses of actions based on a collection of past and hypothetical cases and the justification and
explanation of the conclusions in terms of cases. CBR techniques are used by experts in many
domains including the law, mathematics, architectural design, strategic planning, and political
policy analysis. For example, Anglo-American common law with its doctrine of stare decisis, or
reasoning by precedent, is a paradigmatic example of a domain where CBR techniques are used
for analysis and interpretation of a new case in terms of old cases and where the only bona fide
way of justifying a decision is with cases, where there are no black-and-white rules or predicates,
where there are competing answers, where solutions are tested with hypothetical cases, and where
the context is deliberately adversarial. Design is a excellent example of a domain where CBR
techniques are used for complex problem solving, where new solutions are found through analogical
transformations of past ones, where cases are indexed both on success and failure and on both
similarities and differences, where problem solutions, and patches to them, are remembered and
dynamically indexed, and where there is a crisp performance criterion that the new solution must
be implementable and successful.

These two examples, in fact, illustrate the two basic kinds of CBR:

I. precedent-based CBR in which past cases, "precedents", are used not only to find a new
solution, typically an analysis or interpretation together with its pros, cons and sensitivity to
various factors, but also to justify it and explain its rationale;

2. problem-solving CBR in which past cases are used to find a new solution, typically a plan,
detailed problem solution or course of action, but where the new solution is typically offered
without justifications in terms of the contributing cases.

Both types of CBR share many reasoning subtasks which we outline below. The major differences
are: (I) the indispensibility of justification in precedent-based CBR; and (2) the central role of plans
in problem-solving CBR. In precedent-based CBR, the relevant precedents, or citations to them,

Immiiaries of .ystemq by Rissland & Ashley, Hamminond, and KIdner.
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are woven into the solution. In problem-solving CBR, the relevant cases contribute information but

are not cited explicitly, even though parts of them might be incorporated "verbatim" into the new

solution. Precedent-based CBR typically does not delve into the individual steps of the problem

solution, whereas problem-solving CBR does.

Related, but significantly different from CBR, is "memory-based" reasoning or MBR. MBR

also reasons with cases but is fundamentally different from CBR in that the individual cases lose

their individual identities and cannot be referrenced or cited in the solution. In MBR it is the

contribution of the total ensemble of cases that influences the overall problem solving and evolution

of the system. Individual cases, once having contributed to the solution, are no longer available to

the reasoner, for instance, for explanation or justification.

In the spectrum of how cases are used in the solution, MBR is at one extreme - individual cases

are riot available - and precedent-based CBR is at the other extreme - cases must be available and

are cited individually. Problem-solving CBR is in between - cases are available but typically not

cited. While the thrust of this research program is CBR proper, the related area of MBR should

be examined for potential contributions.

Key research issues to be addressed in this DARPA initiative include:

1. Case Memory and Indexing

* Alternative (e.g., purpose-driven) representations of cases in a Case-Knowledge-Base

* Abstracting information from cases

* Management of the Case-Knowledge-Base

* User-Assisted Acquisition of new cases

o Automated Acquisition of new cases

& Indexing Theories & Methodologies

o Automated Creation of Indices

2. CBR Techniques

(a) Precedent-Based CBR

o Hypothetical Reasoning

e Adversarial Reasoning

9 Argument, Justification & Explanation

(b) Problem-Solving CBR

" Problem Understanding

" Analogical Reasoning

" Plan Adaptation

3. Interactive CBR Environments
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* Generic architecture of a CBR shell

* Intelligent User Interface

* Interactive Explanation & Justification

* Case Summary Generation & Understanding

2. Suminaries of Major Research Issues

2.1 Case-Memory & Indexing

Research issues described in this subsection apply to both types of Case-Based Reasoning.
Central to both are two issues that go hand in hand: (1) use of indices to retrieve and update case
memory: and (2) organization and management of a case memory containing a significant corpus
of cases. In order to use previous cases in reasoning, those cases must be made available to the
case-based reasoner as needed. This means, first, that a case memory with a significant number
of potentially relevant cases, must exist, and second, that the cases be accessible at appropriate
time.

With respect to the indexing issue, one way to make sure the right cases are retrieved when
needed is to use an analysis of the current case in the search of the case memory. For instance,
attributes of the current case can be matched against attributes of cases already in memory and
those whose attributes match are retrieved. Key questions concerning indexing are:

1. What features should be used for indexing?

2. How can the feature set used for indexing be updated and changed?

There are several problems that must be solved to make this approach to indexing work:

1. Attributes to be matched must be chosen well. One approach is to focus on attributes that are
necessary to analyze or resolve the currently open decision. Another is to focus on those that
make other domain-related predictions. Yet another is to focus on its purpose or context.

2. It must be possible to select a best match from the relevant possibilities. One approach is to use
some kind of static similarity metric that is applied through an evaluation function. A better
approach is to determine relevancy dynamically and with respect to the current situation and
the purpose or point of view of the problem solver.

.3. With experience, there should be learning of which attributes to match on. One way is to

update the set of possible attributes with those that, if present, predict failure or success.
A second way is to add those that predict doing something other than what is normally
expected. A third is to examine the reasoning in detail and use a technique like explanation-
based generalization. A fourth is to use a more statistical or memory-based scheme.

4



The companion problem to indexing is the problem of organizing case memory. Typically one
does not want a flat memory structure (e.g., a list) which as the case base grows will cause access
time to grow also. Thus, the challenge is to organize the case knowledge base so that: (1) memory
access does not degrade with increased size; and (2) scaling up to a large corpus of cases is possible.
Both of these desiderata are constrained, of course, by the requirement that the case base must
allow retrieval of relevant cases.

Key issues concerning the organization of a case knowledge base include:

1. What kinds of case structures should be used?

2. How are the case structures linked together?

3. How can different case memory organizations be interfaced?

Current approaches to design of a large case base include:

I. When a case is added to memory, it is indexed within the category corresponding to its
main representational concepts by predictive features that differentiate it from other cases
in the same category. As multiple cases are indexed to the same places, new, more specific
generalized descriptions of situations are created, and cases are indexed by these. The net
result is a redundant and multiple discrimination net structure in which individual cases and
generalized cases reside together. This approach is taken by Kolodner and co-workers.

2. Indexing is not done primarily within categories, as in 1, but instead it is based on function-
ality, such as recognition of a potential failure or the use of a novel plan. This approach is
taken by Hammond.

3. Indexing is done according to existing "lines" of cases which have addressed a given issue
and whose decisions point to similar reasoning (e.g., key features that must be present and
resolved) in order to draw a conclusion. This is the approach taken by Ashley and Rissland.

Each approach to case base organization has its pros and cons. For instance, some advantages
of the first approach are: general knowledge and individual cases can be found by the same retrieval
methods; cases that are similar to each other tend to blend together and the memory does not have
to store them all individually; it is unnecessary to store a full representation of each individual case.
A disadvantage is that as the case base gets large it tends to become unmanageable because of the
large number of remembered differences among cases. Some advantages of the third approach
are: it is easy to find cases which resolve a similar issue similarly, which is both the goal and
hallmark of precedent-based CBR; individual cases remain individual and are available (in full) for
repeated usage- conflicting ways of resolving an issue become apparent; relevancy can be determined
dynamically with respect to the current case. A disadvantage is the need to determine lines of cases.



2.1.1 Management of the Case Knowledge Base

Collecting and properly representing a large body of cases will be an important early task in
the development of any case-based reasoning system. For this task, adequate tools for developing,
editing and browsing through the necessarily large and comprehensive case bases that need to be
developed will be vital. If a case-based reasoning system is to be effective, it will also require a
background knowledge base of ingredient conceptual terms and ways to generate new ones. 2

At the minimum, a case management system "shell" must support:

" Effective means to view cases;

" Ability to abstract and summarize cases;

* Ability to peruse case summaries;

* Ability to edit individual cases;

" Access to and control over the types of indices under which cases are stored;

" Ability to create and edit indices;

* Ability to select ard control indexing methods;

* Provision for reindexing and global memory reorganizations;

* Consistency maintenance between the representations of related cases;

" Consistency maintenance of use of terms throughout the case base;

" Support for the development of more automatic case acquisition facilities.

2.1.2 Assisted Acquisition of New Coses

In an environment supporting CBR, there is always the problem of acquiring new cases. While
the long range goal is to support the automatic acquisition of cases by the environment, in the
short haul, the environment must be supportive of user-assisted case acquisition.

User-assisted case acquisition requires:

* an all-encompassing Case-Knowledge-Base manager program, which includes a case editor,
browser, etc., as indicated in the previous section;

21n a related project of the DARPA Strategic Computing Expert Systems program, the Knowledge Acquisition
Prject of Bolt Beranek and Newman has for the past two years been investigating and developing a collection of state
,)f the art browsing, editing, and consistency maintenance tools for kncwledge representation systems. At present,
th s'e tools have been demonstrated to work well with frame knowledge bases used for natural language processing and
.)bjert oriented systems used for modelling physical processes. These t?-Is were designed flexibly, to be used with a
variety of knowledge representations, and to support consistency maintenance techniques (akin to truth maintenance)
between related types of representations.
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" a user-friendly interface, which supports multiple modes of interaction including graphics,
menu-driven, and natural language techniques, and which allows the interface to model tasks
and purposes for which the environment is used and those of its users;

" tools to support input from existing case bases, libraries, and other sources.

2.1.3 Autoniated Acquisition of New Cases

When competent performance is dependent on a large knowledge base of specific cases, one
must consider the problems involved in creating that case base as seriously as one considers the
viablity of case-based reasoning techniques themselves. This places a high priority on the knowl-
edge acquisition aspect of case-based reasoning. In any domain where hundreds or thousands of
individual cases must influence the problem solving process, automated knowledge acquisition is,
in fact, the only viable strategy.

Thus the long range goal is to have the CBR environment be able to take responsibility for
acquiring new cases on its own. Sources of new cases include: (1) results of the CBR environment's
own case-based reasoning and problem solving (e.g., system-posed hypotheticals, new problem
solutions); (2) new updates from external case bases and libraries; and, of course, (3) the users.

There is a range of problems for automated acquisition. One is the integration of a new case into
the case base without any change to the representation or indexing schemes and their ingredient
primitives. A more difficult problem is the generation of new primitives and schemas to allow the
the structure and description of the case base to evolve.

Integration of a new case into memory is related to the process of finding relevant cases in
retrieval since the same indices used to retrieve related cases can be used to store the new case in
memory. The new case should, of course, also be indexed by relevant features it has that no other
encountered case has ever had. Furthermore, integration of the new case should include making
generalizations based on both similarities and differences between the new case and other cases
already in memory. Integration should also reflect instances of success and failure of a method or
analysis in order to provide shortcuts or warnings in future cases. Problems occuring in integration
include the remembering of a good deal of trivial, coincidental correlations and the missing of
certain novel ones.

Sevrial approaches are available for case acquisition. For instance, in problem solving CBR,
predictions made from a previous solution can form the basis for case acquisition. If a prediction
holds up in a new case, the features responsible for the prediction can be used in remembering
the new case. If predictions don't hold up, then an explanation of why they didn't could be the
way to remember the new case. Thus, one approach to case integration focusses on success and
failure. To learn from mistakes and triumphs, the reasoner must keep track of why it made each
Of the decisions it did and the effects these had on the solution; this is tantamount to dealing with
the "credit assignment" problem well-known to workers in machine learning. This suggests that
work from machine learning (e.g., explanation-based generalization) will have an impact on the
case acquisition problem. Related difficulties in automated case acquisition are: recognizing and
explaining a failure of the existing index set and making recommendations for a new index. These
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are related to the "new term" and "bias" problems, other classics from machine learning, in which
the problem is to learn new terms to add to the problem solver's concept description language to aid
the problem solving, is at the heart of the harder case acquisition problem concerning development
of new representation and indexing schemes.

At the very least, automated acquisition of a new case requires:

1. Selection of memory structures to be used to store the case;

2. Computation of indices for the case;

3. Positioning the case appropriately in the Case-Knowledge-Base;

I. Accomodation of competing indexing and positioning of the case;

Major difficulties in case acquisition are:

2.1.4 Automated Creation of Indices

Clearly, the effectiveness of any case acquisition tool - indeed the effectiveness of the whole
CBR method - depends on the proper indexing of cases and an ability to search memory for cases
that are potentially relevant, but whose primary indices did not anticipate relevance in some new
situation. Unless all cases are indexed by every possible facet of their description, there will always

be the potential for cases to be missed. As new cases are described to the CBR system, either in
the course of developing the case base or in active reasoning with a new CBR problem, it is going
to be desirable, and, in fact, necessary, to create new indices for old cases automatically, so that
the case based reasoner does not have to fall back on extended memory searches repeatedly during
normal operations. Automated creation of indices, and hence automatic memory reorganization,
is a vital part of any effective CBR environment.

To date many CBR systems have been able to work around this issue for the simple reason that
they have never had a large number of cases in memory (i.e., more than 1000). Obviously this will

not be acceptable as larger systems and more ambitious CBR decision aids are developed. Many
systems will continue to do relatively superficial similarity-based indexing in order to organize cases,
but new approaches will also be needed. Candidate methodologies contributing to solution of this

problem include: (1) learning techniques like inductive inferencing and explanation-based gener-
alization: (2) adaptive planning; (3) success-driven and failure-driven problem-solving techniques;
(4) statistical and memory-based reasoning techniques.

2.2 CBR Methods

2.2.1 Precedent-Based CBR

In precedent-based CBR the key is to extrapolate from cases similar to the current case to
decide the current case and to justify this decision in terms of the past cases. A large part of the
effort is on selecting and arguing about the relevancy of cases: showing similarity with supporting
cases and distinguishing contrary cases. The primary elements of precedent-based CBR are:
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acquisition bottleneck that plagues expert systems as well as any CBR system.

2.2.1b Adversarial Reasoning

Precedent-based CBR is inherently adversarial since there are typically competing, contradic-

tory ways of looking at a case. The facts that a prior case (i.e., a "precedent") had a certain cluster

of features, and that the decision of the prior case was made because of some of those features

and in spite of others, are treated as a precedential justification in an argument that a new case
with a similar combination of features should be decided in the same way as the precedent. The

decision of the precedent: (1) Selects certain features that are important enough for purposes of

credit assignment; (2) Clusters the selected features; and (3) Ranks them, ranking the features in
the cluster that favor the decision higher than those that cut against it, at least in that case.

Precedent-based CBR seeks to find those precedents in the CKB which are as close as possible
to the same combination of features as the new case (i.e., the most on point cases or mope's)

and uses them to construct the skeleton of an argument about how to decide the new case. In

analyzing the new case, the importance of features is thus not determined by some a priori ranking

but dynamically in light of the particular combination of features that appear in the new case.

There may be, and ofte, is, no one right answer in Precedent-Based CBR. If the emerging

precedents all favor one decision, then the decision is clear. If the precedents lead to conflicting

conclusions, however, then the case-based reasoner critically compares them, for example, by dis-

tinguishing them, that is, finding factual differences between them and the new case that justify
treating them differently, or by determining hypothetically the effect that deciding the new case

according to one precedent would have on other well-entrenched precedents. This adversarial pro-

cess of comparing precedents yields the strongest precedent-based justifications for deciding the

new case.

2.2.1c Argument, Justification & Explanation

In generating a skeletal argument of justifications based on precedents, a case-based reasoner

provides a framework for explaining a decision and its alternatives. In general, comparisons to
other examples make good explanations. A case-based reasoner explains its analyses by citing

the precedent cases as examples. By "replaying" the process of comparing and distinguishing

the cases in the form of an explicit argumerf with points, responses and rebuttals, the reasoner

lays out the comparative strengths and weaknesses of the alternatives. The case-based reasoner

also poses hypothetical variations of th,. new case or precedents to demonstrate critical features,

which if different, would lead to different conclusions. A case-based reasoner's ability to illustrate
the consequences of and alternativ-s to a given course of action by posing hypothetical scenarios

(worst, best, most recent, most likely cases, etc.) is vital for planning of an argument.

2.2.2 Problem-Solving CBR

In certain problem solving domains, reasoning on the basis of a previous case can help a problem

solver avoid previously-made mistakes (even if a full explanation of why the previous failure hap-
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pened cannot be derived) and direct the problem solver in appropriate problem solving directions,
such as constraining the search space, aiding the problem solver in dealing with relatively novel
situations, or in deriving problem solving shortcuts.

Problem-solving CBR foliows the basic cycle: (1) Recall a previous case by probing case memory;
(2) Focus on appropriate parts of that case; and (3) Use parts of the previous case to derive an
appropriate solution for the new case.

This results in two separate processes running in parallel. A memory process watches the
problem solver's focus, uses it to derive search keys, and queries the memory with those search keys.
At the same time, the problem solver depends on the memory to return to it whatever it finds that
is relevant to the problem solver's focus. The memory process might return generalized knowledge
for the solver to use or it might return a previous case which is similar to what the problem
solver is currently dealing with. The problem solver might also request necessary information from

the memory process when there is something specific it is looking for that is not being provided
automat ically.

In problem-solving CBR an entire case is rarely used since all of its details is too cumbersome
to work with. Rather, the parts of the case that have relevance to the new case are the ones to
focus on, where relevance is determined by the reasoner's goals. These include the set of things
the reasoning is trying to make conclusions about. Given the current goals of the reasoner, focus
is then directed to those parts of the previous case that are relevant to fulfilling the goals. The
goals in turn might come from the problem-solving activities themselves, as in means-ends analysis
problem solving. Sometimes the goal set is known a priori and the reasoner goes through the set
of goals sequentially.

Once the problem solver has an old case, a goal, and has focused on a part of the old case that
is to be used in achieving that goal, it attempts to achieve the goal for the new case based on the
old one. The process for doing this involves many considerations: Was the previous case a success
or a failure? Was the part we are focussing on responsible for the failure or not? Did it change
as a result of re-evaluation? Is there a value that, when derived, will achieve the goal, and if so,
is that value available in the old case? do we know how that value was derived for the old case?
Was it by an "easy" or a "complex" set of reasoning steps? Do we know why the value from the
previous case was appropriate? Do we know why the method of deriving that value previously was
appropriate? If achievement of the goal is not done by simple derivation of a value, do we have a
generalized schema that explains how the goal was achieved previously? If no schema, do we have
the set of steps? Is our goal to derive a plan or is it to derive a feature value?

Three particularly critical aspects of problem-solving CBR are: (1) problem understanding; (2)
analogy; and (3) plan/solution adaptation.

2.2.2a Prohlem Understanding
If CBR problem solvers are to use previous experience in making decisions, then they must also

be able to evaluate results of reasoning they have previously done. Since one cannot assume that
problems for CBR are so well-defined as to admit a black-and-white specifications for success or
failure, CBR problem solvers must be able to accept feedback from their users as well as provide

II



explanations and justifications. In particular, CBR problem-solvers will be expected to become
more proficient and this necessitates analysis of both failures and successes. Thus, problem-solving
('BR is closely connected with learning and explanation/justification. Because a reasoning failure
may be due to misrepresentation or misunderstanding of a problem, problem understanding is a
critical part of the standard problem solving cycle, where by understanding is meant derivation of
appropriate problem representations and elaboration of the problem statement to fill in missing
details,

Understanding a new case includes finding the best knowledge in memory that can be used to
make predictions from it. Finding this knowledge is equivalent to integrating the new case with
what is already in the memory. As reasoning is going on, memory is constantly being probed and
updated, and the case is becoming better integrated and understood, and hence, better knowledge
to uise in making predictions about the case is being derived.

2.2.2b Analogy
..\n important component of case-based reasoning is the process of analogizing relevant related

Cases to suggest solutions and hypotheses for new situations. This potentially requires several

forms of analogical reasoning, such as: (1) within-domain adjustments or transformations; (2)
across-domain transformations; and (3) use of the same case for different purposes. Such reasoning
requires methods for mapping and merging alternative structures and the capacity to integrate
several partially-correct analogies.

In general. analogical reasoning requires:

" The ability to retrieve and map multiple related causal scenarios for the current case, possibly
from different base domains;

" The ability to determine analogical correspondences based both on the roles of objects in
comparable situations and also their similarity in terms of static properties;

" The ability to incrementally extend an analogy to new target situations, taking into account
adjustments made by the target domain reasoner following an initial mapping;

* The ability to merge the results of several analogies in reaching a satisfactory solution to the
problem at hand.

There are several different analogical methods available. Transformational analogy is a method
whereby a value or frame (schema) is transferred from a previous case and transformed to fit the
new case. In derivational analogy, the conditions under which a previous decision was made are
taken into account and transfer tends to be of a method for making a decision rather than a value.
In schema-based analogy the current and previous cases are compared and a schema describing the
similarities of the problem statements is described. The schema must be such that it can be used
to describe both problem statements. It is then broadened to describe the solution to the previous
problem and the new problem is solved by application of the schema.

12



While these three methods are the ones that are applicable when the previous case resulted
in success, additional reasoning must go on when the previous case resulted in failure. In this
case, the conditions under which previous values were computed and the set of steps used to to
make decisions are checked against the new case to see if the same potential for failure exists. The
previous case may also provide suggestions to the problem solver of how to proceed. In order for
failure-driven and derivational analogy, in general, to work, the problem solver must keep track of
the justifications for its decisions, including the reasoning steps used, the conditions under which
they were chosen, and the set of other possible choices, must be maintained, as well as the depen-
dencies between problem solving decisions, in a similar way to what a truth maintenance system
does.

2.2.2c Plan Adaptation
When the problem solver's goal is to derive a plan, there are a set of special-purpose case-based

inference methods that are used in addition to the methods just described. The problem in this case
is "plan modification", modifying a previously-used plan to fit a new situation. The previously-used
plan might be a plan schema that is not completely applicable to the new situation, or it could be
the particular instantiation of a plan used in a particular case.

One way for a problem solver to modify a plan is to store knowledge with the plan's preconditions
about the results of proceeding without fulfilling the precondition, alternate ways the precondition
might be fulfilled, and ways in which to change the plan so that the precondition is no longer a
problem.

Adaptive planning focuses on techniques needed for re-using old plans in new situations. Because
the old plans represent the habitua!ized activities of the planner they tend to be fairly specific.
Adaptive planning requires:

" The explication of background knowledge that is associated with the old plans, in particular,
(a) causal knowledge and (b) categorization knowledge.

" Developed heuristics that exploit the background knowledge in the service of re-using the old
plan.

" Understanding types of situation difference that can occur between the old plan and the
current situation and heuristics that are geared to each type of situation difference.

" Situation matching techniques for replacing individual (sub)steps by others, in memory, that
are more appropriate to the current situation.

Work on adaptive planning is directly relevant to work on adversarial methods, when adaptive
planning techniques are extended: (1) to handle the interactions among several plans and thus
could coordinate plans among allies and adjustments due to the recognition of an adversary's plan;
(2) to the problem of recognizing an adversary's plan; and (3) to handle the interaction between
strategic and tactical concerns.

13



Work on adaptive planning also impacts on indexing because a number of the adaptive tech-
niques exploit the categorization of plans. It also relates to interactive justification and explanation
because the trace of the adaptive planner can be read like an explanation and justification of its
reasoning.

2.2.3 Related Work on Memory-Based Reasoning & Machine Learning

It is one thing to propose theories and solutions regarding memory and indexing that work for
a limited prototype operating with a relatively small case base (less than 100 cases). It is quite
another to develop techniques that remain effective when the case base is large (thousands of cases).
We do not have enough experience with traditional, typically heuristic, Al methods under these
circumstances to know whether or not they can maintain acceptable performance levels under large
memory conditions. Memory-based reasoning methods, on the other hand, address this situation
explicitly since MBR is designed with large case bases in mind. It is therefore imperative to
understand the relationship between MBR and CBR.

Two particularly relevant areas are: (1) case-driven training; and (2) generalization-based learn-
ing methods.

2.2.3a Case-Driven Training
For any domain where a large number of specific cases are available to a case-based reasoner,

there is an opportunity to use the case-base to train the system. This training process may be
straightforward or difficult depending on the form of available cases and the types of knowledge
representation required. Some problem areas are by their very nature amenable to memory-based
techniques, as has been shown by recent work on word pronounciation; this is so because knowledge
structures needed to represent the elements of the case are easy to extract. On the other hand,
the amount of effort required to train a system in an area such as political history is substantial
since all available cases are encoded in natural language descriptions; for such domains, all of
the problems associated with knowledge-based natural language processing are relevant since we
cannot automate the analysis of a case without automating the process of understanding the text
describing it.

If we can make progress on design principles for case-based training, we will have a powerful
strategy for handling the "knowledge acquisition bottleneck" problem. With a competent training
module in place, the problem of building up knowledge to support a case-based reasoner becomes a
problem in designing effective training sessions which entails the intelligent selection or generation
of example cases, mentioned above in regard to hypothetical reasoning.

2.2.3b Generalization-Based Learning Methods
In some domains, learning depends on a careful, detailed examination of a few example learning

episodes rather than on a more superficial alteration of a learning system's behavior on the basis of
how the examples were labelled (e.g., as positive or negative examples). In problem-solving CBR,
the system inspects its own problem-solving behavior. Feedback to the system on its performance
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is then used to shape the system's evolution as it gains more experience with specific problems.
This makes certain problem-solving methods similar to certain machine learning techniques like

explanation-based generalization.
Generalization-based methods provide a kind of indexing that is important when handling large

numbers of case examples. While other methods of indexing (such as around planning failures)
will be needed, it is impractical to expect such complex methods to be applied to large numbers
of cases in the near future. It seems reasonable to strike a balance between superficial methods
and "deep" problem-solving methods. Generalization-based methods inspect an intermediate level
of detail and thus should be useful to work on CBR. Such approaches should complement CBR
techniques, which examine small numbers of case in great detail.

2.3 Interactive CBR Environments

'['here are several aspects of building a high-powered CBR environment. This section briefly
addresses some of those that have not been expressly covered in other sections of this document.

Generic Components of CBR Environments

First of all, there is a need to determine the generic subtasks in CBR and a processing ar-
chitecture that embraces them in a unified way, so that it will be possible to build future CBR
systems more efficiently and principledly. A major component of such a generic CBR environment,
of course, would be a facility or "toolkit" for managing the Case-Knowledge-Base; desiderata for

such a management shell have been addressed in Section 2.1.1. Other generic components of CBR

environments are: (1) an intelligent interface that supports graceful interaction in the environment,
in particular (2) interactive explanation and justification of the case-based reasoner's conclusions,

recommendations, etc.; and (3) case summary generation and understanding.

Intelligent User Interface

In designing and building a sophisticated CBR environment, it is imperative that the needs,

styles, and expectations of the users be not forgotten. At the very least, precepts of good intelligent
user interfaces should be followed: that the system degrades gracefully, is tolerant of user-error,

does not pedantically ask for information that is readily inferable, offers a variety of interaction

modalities, and is able to model the users and their tasks. Further work will be needed to elucidate
principles and requirements peculiar for CBR environments. These of course will be partially
dictated by the application areals] chosen.

Interactive Explanation & Justification

A sophisticated CBR environment will also need to address the problem of interactively ex-
planing and justifying a case analysis. This requires that the interface not just be a conduit

for information between the user and the CBR modules performing explanation and justification.
There will need to be models of the user, what information he might want or be satisfied with, and
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the purposes to which the information will be applied. It will require intelligent discourse between
the environment and user and, as is well-known, this will require conceptual understanding of the
user's input.

Case Summary Generation & Understanding

Users of a sophisticated CBR environment, particularly high level decision makers, will demand
to see summarizations and abstractions of the case at hand and those cases and hypotheticals that
the CBR system used in its reasoning. Further, such a user might well want to present a case to the
system in a natural language summarization. Thus, while the focus of this research is cas'-based
reasoning and not natural language, it is important for the success of this research with its intended
users that CBR systems have some rudimentary natural language understanding ability. (This is

also related to the desiderata of case abstraction, listed in Section 2.1.1, and the central task of
problem understanding, considered in Section 2.2.2a.) At the very least, the ability to present and
understand short case summaries will help the researchers and developers of CBR systems in their
work.
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